PRINT DATE: 04/11/98

PAGE: 1

FAILURE MODES EFFECTS ANALYSIS (FMEA) -- NON-CIL HARDWARE NUMBER: M5-68S-0907 -X

SUBSYSTEM NAME: ISS DOCKING SYSTEM

REVISION: 0 02/27/98

PART DATA

PART NAME

VENDOR NAME

PART NUMBER

VENDOR NUMBER

LRU

:PANEL ML86B

VO70-730382

SRU

:CIRCUIT BREAKER

MC454-0026-2030

EXTENDED DESCRIPTION OF PART UNDER ANALYSIS:

CIRCUIT BREAKER, 3 AMP - EXTERNAL AIRLOCK DOCKING BASE HEATER CONTROL, VESTIBULE, ZONES 1, 2, AND 3

REFERENCE DESIGNATORS:

80V73A130CB110

80V73A130CB112

QUANTITY OF LIKE ITEMS: 2

(TWO)

FUNCTION:

CONTROLS POWER TO THE PATCH HEATERS AND PROVIDES OVERLOAD PROTECTION FOR THE MUSSE PANEL BUS A(B) FROM THE A3K6 CONTACTOR IN MID PCA 1(2).

REFERENCE DOCUMENTS:

1) V\$70-640109, SCHEMATIC DIAGRAM - AIRLOCK

ENVIRONMENTAL CONTROL SUBSYSTEM

FAILURE MODES EFFECTS ANALYSIS FMEA - NON-CIL FAILURE MODE

NUMBER: M5-6\$\$-0907-01

REVISION#: 0

02/27/98

SUBSYSTEM NAME: ISS DOCKING SYSTEM

LRU: PANEL ML86B

CRITICALITY OF THIS FAILURE MODE: 1R3

ITEM NAME: CIRCUIT BREAKER

FAILURE MODE:

FAILS OPEN, FAILS TO CONDUCT, FAILS TO CLOSE

MISSION PHASE:

OO ON-ORBIT

VEHICLE/PAYLOAD/KIT EFFECTIVITY:

103 DISCOVERY

104 ATLANTIS

105 ENDEAVOUR

CAUSE:

A) STRUCTURAL FAILURE, B) CONTAMINATION, C) VIBRATION, D) MECHANICAL SHOCK, E) PROCESSING ANOMALY, F) THERMAL STRESS

CRITICALITY 1/1 DURING INTACT ABORT ONLY? NO

CRITICALITY 1R2 DURING INTACT ABORT ONLY (AVIONICS ONLY)? NO

REDUNDANCY SCREEN

A) PASS

PASS

C) PASS

PASS/FAIL RATIONALE:

A)

B)

C)

METHOD OF FAULT DETECTION:

REVIEW OF HEATER CIRCUIT TELEMETRY DATA

MASTER MEAS, LIST NUMBERS:

V64S0165E

V64S0166E

FAILURE MODES EFFECTS ANALYSIS (FMEA) — NON-CIL FAILURE MODE NUMBER: M5-6SS-0907-01

CORRECTING ACTION: MANUAL

CORRECTING ACTION DESCRIPTION:

CREW WILL CLOSE CIRCUIT BREAKER FOR REDUNDANT HEATER CIRCUITS.

- FAILURE EFFECTS -

(A) SUBSYSTEM:

FIRST FAILURE - LOSS OF POWER TO ONE HEATER CIRCUIT IN EACH ZONE. REDUNDANT HEATER CIRCUITS IN EACH ZONE CONTROL TEMPERATURE WITHIN LIMITS.

(B) INTERFACING SUBSYSTEM(S):

FIRST FAILURE - NO EFFECT

(C) MISSION:

FIRST FAILURE - NO EFFECT

(D) CREW, VEHICLE, AND ELEMENT(S):

FIRST FAILURE - NO EFFECT

(E) FUNCTIONAL CRITICALITY EFFECTS:

POSSIBLE LOSS OF CREW/VEHICLE AFTER TWO FAILURES:

- 1) CIRCUIT BREAKER FAILS OPEN LOSS OF POWER TO ONE HEATER CIRCUIT IN EACH ZONE. REDUNDANT HEATER CIRCUITS IN EACH ZONE CONTROL TEMPERATURE WITHIN LIMITS.
- 2) CIRCUIT BREAKER OF REDUNDANT HEATER CIRCUIT FAILS OPEN LOSS OF POWER TO ALL HEATER CIRCUITS. POTENTIAL CONDENSATION ON EXTERNAL AIRLOCK WALLS RESULTS IN WATER IN EXTERNAL AIRLOCK. WATER MIGRATION TO KEEL AREA COULD RENDER RUSSIAN AVIONICS INOPERATIVE AFTER DOCKING, RESULTING IN LOSS OF NOMINAL AND PYROTECHNIC UNDOCKING CAPABILITY.

DESIGN CRITICALITY (PRIOR TO DOWNGRADE, DESCRIBED IN (F)): 1R2

(F) RATIONALE FOR CRITICALITY DOWNGRADE:

WORKAROUNDS ARE AVAILABLE TO MITIGATE THE RISK. THEREFORE, CRITICALITY IS DOWNGRADED FROM 1R2 TO 1R3.

AFTER THE SECOND FAILURE, THE CREW WOULD PERFORM EVA TO REMOVE 96 BOLTS FROM THE DOCKING BASE TO CIRCUMVENT THE WORST CASE "DESIGN CRITICALITY" EFFECT. IF UNABLE TO PERFORM EVA (THIRD FAILURE), POSSIBLE LOSS OF CREW/VEHICLE DUE TO LOSS OF ALL UNDOCKING CAPABILITY.

PAGE: 4 PRINT DATE: 04/11/98

FAILURE MODES EFFECTS ANALYSIS (FMEA) - NON-CIL FAILURE MODE NUMBER: M5-8SS-0907-01

- TIME FRAME -

TIME FROM FAILURE TO CRITICAL EFFECT: DAYS

TIME FROM FAILURE OCCURRENCE TO DETECTION: HOURS

TIME FROM DETECTION TO COMPLETED CORRECTING ACTION: HOURS

IS TIME REQUIRED TO IMPLEMENT CORRECTING ACTION LESS THAN TIME TO EFFECT? YES

RATIONALE FOR TIME TO CORRECTING ACTION VS TIME TO EFFECT:

AFTER THE SECOND FAILURE, THE CREW CAN PERFORM EVA TO REMOVE 96 BOLTS FROM THE DOCKING BASE TO UNDOCK.

HAZARD REPORT NUMBER(S): ORBI 401

HAZARD(S) DESCRIPTION:

INABILITY TO SAFELY SEPARATE ORBITER FROM A MATED ELEMENT

- APPROVALS -

SS&PAE

DESIGN ENGINEERING

: T. K. KIMURA

: C. J. ARROYO